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nonlinear convective term Pressure gradient Viscous term Source term 

Divergence-free constrain 
condition 

Elliptic 
Incompressible  
Navier-Stokes  
equations 

The Reynolds number                             comes 
out as the result of normalization 

  The mixed FEM formulation is adopted to   
      get the solution           simultaneously 

George Gabriel Stokes, 
(1819-1903) 

Claude-Louis Navier 
(1785-1836) 

Three-dimensional steady incompressible Navier-Stokes equations  
in primitive variables           are as follows : 
 

on 

(1) 

(2) 

(3) 



 
C1 – Rigorous implementation of boundary condition and assurance of  
         divergence-free constrain for the elliptic differential system of     
         equations 
 
C2 - Accurate approximation of convection term               in fixed    
        grid to avoid oscillatory velocity field 
 
C3- Proper storage of primitive variables       and      to avoid even-odd   
       pressure solution 
 
C4- Effective calculation of            from the unsymmetric and indefinite 

matrix equation using modern iterative solver 
 
C5- Parallel implementation of finite element program 



O1- Adopt mixed formulation of equations cast in primitive variables 
 
O2- Derive a streamline upwinding Petrov-Galerkin formulation featuring    
        the numerical wavenumber error reducing property for the  
        convection term 
 
O3- Formulate finite element equations in weak sense in trilinear pressure    
       /triquadratic element to satisfy the LBB compatibility condition 
 
O4- Apply preconditioner to the normalized symmetric and positive 

definite matrix equations to ensure fast unconditional convergence  for 
high Reynolds number simulation 

 
O5- Implement CUDA programming finite element code in hybrid CPU-   
       GPU (Graphic Process Unit ) platform to largely reduce the simulation   
       time 
 



(Numerical Heat Transfer ; in press ) 



The proposed Petrov-Galerkin finite element model is as follows  

where      and      are the weighting functions for the 
momentum and continuity equations, respectively 



The weighted residual weak formulation for the convection  
term in one-dimensional 

 
 
 
 
 
 

 

 

Substituting the quadratic interpolation function into the above  
weak statement to derive the discrete equations at the  
center and corner nodes, respectively 

- Galerkin model                              :  
- Wavenumber optimized model :  

biased part 



    The discretization equation for the convection term in a  
quadratic element is expressed as follows : 
 
 
 

    To minimize the numerical wavenumber error, the Fourier 
transform and its inverse 
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are applied to derive the numerical wavenumber 
as 



 The actual wavenumber can be regarded as the right hand side 
of the numerical wavenumber 
 
 
 

 We define the error function to minimize the discrepancy 
between       and  
 
 
 
 

 The limiting condition             is enforced to get the expression 
 
    of      as   
     

 

δ



 

 

 

 
 In multi-dimensional problem, the method of operator 

splitting is adopted to get the stabilization term along 
the streamline direction 
 

1 ; at end node
2δ=

8-3π ; at center node
-22+6π







, where 



For the smallest problem (23 elements), the indefinite matrix 
equations takes the following profile 

- unsymmetric 
- diagonal void  
- ill-conditioned 



 The linear system derived from the FEM is usually written 
in the form 
 
 
 
 
 

 90% of computation time of FEM is used to solve (*) by 
GMRES or BICGSTAB 

 It is a grand challenge to solve (*) efficiently using iterative 
    solution solver for three-dimensional large size problems 
    => our proposed iterative solver given below 

 

Global matrix 
Solution vector 
Right hand side 

where 

-------- (*) 



 To avoid Lanczos or pivoting breakdown, the linear system has 
been normalized , leading to the following positive definite and 
symmetric matrix equation 
 
 
 
 

 Since the normalized linear system becomes symmetric and positive 
definite, the unconditionally congergent Conjugate Gradient (CG) 
iterative solver is applied 

 Preconditioning of matrix is adopted to reduce the corresponding 
increase of condition number 

 Two techniques will be adopted to accelerate matrix calculation 
◦ The mesh coloring technique (To avoid the race-condition)  
◦ The EBE technique (To avoid global matrix assembling) 
 

symmetric, positive definite 

symmetric and positive definite 



Mesh coloring 
technique 



 In the “Update step” of PCG algorithm, provided that any two 
threads update the same vector component simultaneously, it 
will result in the so-called race-condition 

  
 

 To avoid the race-condition, we divide the all elements into a 
finite number of subsets such that any two elements in a 
subset are not allowed to share the same node 
 

(If two men ride on a horse, one must ride behind) “一山不容二虎” 

* Different colors will be   
   proceeded in sequence 

* Elements with the same color    
   are proceeded simultaneously   
   and in parallel 



   In FEM, the global matrix      can be formulated as : 
 
 
 
 

   Underlying this concept, we have 
 
 
 
 

   => Time-consuming the matrix-vector product can be   
         therefore implemented in an element-wise level  

 

 

 

 

 





http://www.nvidia.com.tw/object/what-is-gpu-computing-tw.html 

 Computation is carried out on GPUs (Graphics Processing Unit) to 
get a good performance in scientific and engineering computing 

Intel i7 4820K 
Processor ~ 3.7GHz 

NVIDIA Tesla K series 
Kepler K20  
Processor clock rate = 705MHz 
Bandwidth = 208 GB/s 
Memory = 5 GB (DDR5) 

* Parallelism 
     - CPU has 8 cores 
     - GPU has more than 1000 cores 
* Memory 
     - CPU can reach 59 GB/s bandwidth 
     - GPU can reach 208 GB/s bandwidth 
* Performance 
      - CPU can reach 59.2 GB (double) 
     - GPU can reach 3.52 TB/s (single)   
                                   1.17 TB/s (double) 



 (Compute Unified Device Architecture) 
 

 CUDA is a general purpose parallel computational model 
released by NVIDIA in 2007 
 

 CUDA only runs on NVIDIA GPUs 
 

 Heterogeneous serial (CPU)-parallel (GPU) computing 
 

 Scalable programming model 
 

 CUDA permits Fortran (PGI) and C/C++ (NVIDIA NVCC) 
programming compliers 



 CPU (host) plays the role of “master” and GPUs (device) 
play the role of “workers” 

 

 CPU maps computational tasks onto GPUs 
 CPU can carry out computations at the same time when code 

is run on GPUs 
 

 Basic flow chart 
◦ CPU transfers the data to the GPU 
◦ Parallel code (kernel) are run on the GPU 
◦ GPU transfers the computational results back to CPU  
 
 
 



1. Block is the smallest execution unit in GPU 

2. All threads in a block are executed simultaneously 

Note 

Current 
CPU-GPU 
hardware 
architecture 





1. Global memory (5GB DDR5) (Double Data Rate ) 
 

2. Shared memory (48KB/SMX) 
 

3. Cache memory (1536KB L2) 
 

4. Texture memory (48KB) 



 To implement the EBE on GPU, the new formulation will be 
adopted. Given an e-th element matrix, RHS and its product  

    are as follows 
 
 
 
 
 

 One needs to compute the product                    , The resulting 
matrix-vector product results in a race-condition 



Race-condition algorithm Non-race-condition algorithm 

Elements with the same color will be executed in parallel  
in a non-race-condition algorithm simultaneously 

(Traditional) (New operation) 

M S S 

S 

M : Multiplication operation 
S   : Sum operation 

M 

M 

S M 





 The analytic solutions which satisfy the steady-state 3D 
Navier-Stokes equations are given as follows : 
 
 

    The corresponding exact pressure is given below 
 
 

 Problem setting 
◦ Re=1,000 
◦ Non uniform grid size : 113,213,413,613  
◦ Matrix Solver                : PCG solver (iterative) 



 The L2 error norms are listed as follows : 
 
 
 
 
 
 

 R.O.C. (Rate Of Convergence ) 
 The predicted solutions show good agreement 

with the exact solutions 
 

 
 
 
 
 

L2U L2V L2W L2P 

113 

213 

413 

613 

R.O.C. 

1.366×10-3 

1.420×10-4 

3.485×10-5 

1.861×10-5 

2.26 

2.835×10-3 

3.207×10-4 

7.357×10-5 

3.462×10-5 

2.32 

3.847×10-3 

5.606×10-4 

1.120×10-4 

5.040×10-5 

2.30 

6.186×10-3 

1.713×10-3 

4.378×10-4 

1.683×10-4 

1.90 



u 1=
 Problem domain :  
 Boundary condition 
◦ u=1,v=w=0 at upper plane 
◦ Non-slip at other planes 

 Non-uniform grid number : 513 

 Re=100,400,1000,2000 
 Jacobi preconditioner is adopted 
 Newton-linearization is adopted 
 

[0,1] [0,1] [0,1]Ω = × ×

Schematic of the lid-driven cavity  
flow problem 

- D. C. Lo, K. Murugesan, D. L. Young, Numerical solution of three-dimensional velocity Navier-Stokes equations    
  by finite difference method, International Journal for numerical methods in Fluids,47,1469-1487,2005 
 - C. Shu, L. Wang and Y. T. Chew Numerical computation of three-dimensional incompressible Navier–Stokes equations    
   in  primitive variable form by DQ method, International Journal for Numerical methods in Fluids, 43 :345–368, 2005. 
 



Re=100 Re=400 

Re=2000 Re=1000 

Compare the 
velocity profiles 
u(0.5,y,0.5) 

w(x,0.5,0.5) 



 Computations are implemented on the following two  
    different platforms 

 
 
 
 

 The lid-driven cavity problem at different Reynolds and grid 
numbers is used to access the performance of the current 
hybrid CPU/GPU calculation 

Platform #1 specification Platform #2 specification 
     Single CPU platform 
     CPU : Intel i7-4820K 
     GPU : Non 

Hybrid CPU/GPU platform 
    CPU : Intel i7-4820K   
    GPU : NVIDIA Kepler K20 



Platform Re=100 Re=400 Re=600 Re=800 

Platform # 1 (a)  

Platform # 2 (b) 

Speedup (b)/(a) 

416.5 860.4 1292.8 1769.5 

 Grid number = 313 
 
 
 
 
 
 

 Grid number = 413 

Re=1000 

2437.2 

4555.4 10087.9 15075.5 21515.7 29836.2 

10.93 11.72 11.66 12.15 12.24 

Platform Re=100 Re=400 Re=600 Re=800 

Platform # 1 (a)  

Platform # 2 (b) 

Speedup (b)/(a) 

1377.1 2599.9 3424.1 4687.4 

Re=1000 

6502.3 

19823.2 36639.0 54635.3 65215.7 91780.6 

14.3 14.0 15.9 13.9 14.11 



Platform Re=100 Re=400 Re=600 Re=800 

Platform # 1 (a)  

Platform # 2 (b) 

Speedup (b)/(a) 

3433.0 5983.7 7113.0 9606.1 

 Grid number = 513 
 
 
 
 
 
 

 Grid number = 613 

Re=1000 

12487.2 

50782.0 91012.0 113921.9 144358.3 196173.9 

14.79 15.20 16.01 15.02 15.71 

Platform Re=100 Re=400 Re=600 Re=800 

Platform # 1 (a)  

Platform # 2 (b) 

Speedup (b)/(a) 

7702.8 11598.7 13939.7 17684.7 

Re=1000 

22222.5 

111338.8 168420.8 202867.8 256204.9 331559.7 

14.45 14.52 14.55 14.48 14.92 





 A new streamline upwind FEM model accommodating the 
optimized numerical wavenumber along the streamline  

    has been developed 
 

 The unconditionally convergent finite element solution can be 
iteratively obtained from the normalized symmetric and positive 
definite matrix equation using the PCG solver 
 

 Novel non-race-condition and EBE techniques have been  
    successfully implemented on GPU architecture 

 
 Computational time has been reduced more that ten times in a 

hybrid CPU/GPU platform  



Thank for your attention ! 
                   Q/A ? 
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